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INTRODUCTION 

To analyse river flow and to clarify velocity and water elevation are highly important and 
valuable in the field of engineering for the purposes of the design of river structures, prediction 
of water quality, estimation of flood damage, etc. The governing equation of river flow can be 
described by the shallow water theory in which the effect of the gravity force due to the inclination 
of the river bed is considered. Usually, two types of the shallow water equations are used in 
these analyses, of which one employs velocity and water elevation as unknown variables and 
the other uses discharge and water elevation. In this paper, the latter formulation is used for 
computational convenience. For instance, as the boundary condition at the upstream site, the 
discharge condition is more convenient because discharge, not velocity, is usually observed in 
field measurements. 

A few finite element methods have been presented previously for the analysis of river flow. 
Cochet et al.' investigated the finite element method of steady river flow using the penalty 
method. Su and Wang2 examined the quadratic finite element with a third-order time 
discretization scheme. Lee3 presented the method for the analysis of flood plains. Research by 
Baker and Soliman4 is concerned with river flow analysis. 

This paper presents the two-step explicit finite element which has been successfully 
applied to solve the shallow water equation of river flow. The linear interpolation functions for 
both discharge and water elevation have been used based on the three node triangular finite 
element. In the analysis of this paper, the treatment of the boundary configuration, which moves 
according to whether the water elevation increases or decreases, is considered. The principal 
author presented a method to deal with the movement of the boundary in a previous paper.5 
However, stable computations sometimes could not be obtained using the previous method. 
Thus, the method has been improved to ensure numerical stability. 

Distinctive features of the analysis in this paper are summarized as follows. First, the finite 
element method is presented taking into account the effect of the gravity force. The selective 
lumping two-step explicit method is shown to be effective in the analysis. Secondly, the treatment 
of the moving boundary is presented using the improved algorithm based on the previously 
presented method. Thirdly and finally, three examples, i.e. flow through a channel with a rigid 
wall, flow through a channel with exposed mounds at the channel bed and the actual Arakawa 
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River, are computed numerically. These features show that the finite element method presented 
in this paper is a useful tool for the analysis of river flow. 

BASIC EQUATIONS 

The behaviour of river flow can be regularly expressed by the shallow water equation. The 
Cartesian co-ordinate is placed at  the still water level on the surface of the river as shown in 
Figure 1. Equations in this paper are written employing the indicia1 notation and the summation 
convention with repeated indices. The horizontal co-ordinates are expressed by x i ( i  = 1,2) and 
time is t .  Differentiations with respect to x i  and t are denoted by subscripted comma and 
superscripted dot, respectively. It is reasonable to assume hydrostatic pressure distribution in 
the water depth direction, 'considering that the horizontal length scales are far larger than the 
water depth scale. The equations of motion and continuity can be described in the following form: 

Y 
2 Mi + (UjMi) , j  + -cOs ecos cp(H + r]): - A,(Mi, j  + Mj,i),j + fMiJ(MkMk)  = g(H + r])@i, (1) 

tj + Mi,i = 0, 

Mi = Ui(H + q )  

(2) 

(3) 

where U ,  and r]  denote mean velocity and water elevation, M i  is discharge per unit width, i.e. 

and H ,  A , ,  y and f represent water depth, turbulent viscosity, gravity acceleration and friction 
coefficient, respectively. The gravity contribution is expressed by 0, i.e. 

0, = sin8, (4) 

0, = sin cp, ( 5 )  

where the mean gradients of the river bottom for both x and y directions are written as 8 and 
4, respectively. Thus, equation ( 1 )  includes the effect of gravity due to the inclination of the river 
bottom. 

As the boundary conditions, the following three types are considered. On the boundary S , ,  
the discharge is postulated in the form 

M i = M i ,  on S i ,  ( 6 )  

Y 

Figure I .  Co-ordinate system 
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where superscripted A means the value which is prescribed on the boundary. The vertically 
integrated surface flux ri is given on the boundary S ,  by 

ri = { A , ( M i , j  + M j , i ) } n j  = Pi, on S, ,  (7) 

where hij  denotes the Kronecker delta and nj  is the unit normal to the boundary. The water 
elevation is given on the boundary S, ,  

q = 4 ,  on S,.  (8) 
The whole boundary S of the flow field I/ to be analysed consists of S ,  and S ,  only, and S ,  
and S ,  do not overlap. The boundary S ,  is a part of S,.  The basic equations treated in this 
paper are equations (1)-(5) with boundary conditions (6)-(8). 

FINITE ELEMENT EQUATIONS 

The shallow water equation has been formulated based on the vertically integrated form taking 
water discharge and elevation as field variables. In the practical analysis, a great number of 
nodal points and elements are required to express the precise behaviour of river flow in detail. 
Therefore, to save the computer core storage and computational time, the two-step explicit 
method is usefully employed, of which the precise formulation has been presented elsewhere. 

The flow field to be analysed is divided into triangular finte elements, for which discharge M i  
and water elevation y~ are interpolated as 

M i  = @,Mai, (9) 

vl = @',vl,? (10) 

where @, denotes a linear interpolation function, Mai denotes nodal values of discharge at the 
ccth node of an element in the ith direction and q, are nodal values of water elevation at the 
ccth node. 

The total time interval to be analysed is also divided into time increments, of which the interval 
is denoted by At. A superscripted n indicates nodal values at the nth time point. The final 
equation of the two-step explicit finite element method can be expressed in the following form: 

for the first step: 

At A,pM;T1'2 = A,pM;i - y [B ,p jyU; jMyi  + C,pyjU;jM;i + S,ipjM;j 

+ F,,yi(H, + v;)(Hy + v;) - Aa,(Hp + Yl",,S@i + Acx,jAM;i - Q a i l ,  (1 1) 

(12) 
AaSvl;+f/2 = - At 

A n p v ~ ;  - T G,piM;i, 
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A a p  = (@a@p)dl/. B a p j y  = (@a@p,j@y)dv, Capyj = (@a@p@y,j)dY Iv  J v  J V  

Iv  alpJ J A,(@a.k@,,k)bijdv + AL@a,j@p.Jdv> s .  . =  

F a p y j =  J gcosecoscp(@a@p~y,i)dv, Gap;= (@a@p,i)dK 

V 

Iv  
A = fJ(MorkMak), a a i  = Js2(@ai.)ds, 

in which I/ is the area of a finite element of which the boundary is S. In equations (11)-(14), 
A,, means the lumped coefficient of A,,, and is the mixed coefficient which is 

amp = eAUp + (1 - e)Aap, (15) 

where e is referred to as the lumping parameter. The conventional superposition procedure leads 
to the finite element equation of the global form. The nodal velocity UPi can be computed from 
the nodal discharge Mpi divided by the water elevation qp. 

TREATMENT OF MOVING BOUNDARY 

It is valuable and almost indispensable to introduce how to compute the movement of the 
boundary configuration in the analysis of river flow. That means how to decide which part of 
the river bottom is exposed. In this paper, the computation has been carried out depending on 
the following criteria: 

At first, it must be decided if the river bottom is covered with water or not, which can be 
deduced from the following equations: if h = - H + q < 0 then the bottom is exposed, and if 
h =  - H + q > O  then the bottom is submerged, where H and q express water depth and 
water elevation, respectively; both are computed from the mean water level. 

Secondly, one can decide if a finite element is exposed or submerged. If two of the three nodal 
values of h at a finite element are greater than zero, the element is omitted from the computation. 

Thirdly, one must decide which element is located on the boundary between land and river. 
If one nodal value of h of an element is greater than zero, the element is decided to be on the 
boundary. In this case, two components of discharge at  three nodal points of the finite element 
are specified to be zero. One water elevation, which is computed as h < 0, is also specified to 
be zero, whereas the other two nodal values of water elevation are included in the computation. 

Finally, the next iteration cycle is repeated using the new specified boundary conditions based 
on the revised finite element idealization. This revision is carried out at both the first and second 
time steps of the two-step scheme. 

Figure 2 illustrates the above explained treatment of the moving boundary. Finite elements are 
numbered as a, @, @, 0,. . . and nodal points are 1,2,3,4,. . . . Then, for example, the following 
treatment is performed: 

1.  Element with nodes 1,2 and 11, and element @ with nodes 11,lO and 1 are omitted from 
the computation because all their water elevations are greater than zero. 

2. Element @ with nodes 2,3 and 12, and element 0 with nodes 12, 11 and 2 are used in the 
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\ I 
1 2 

I12 I14 I15 

3 4 6 

Figure 2. Schematic illustration of moving boundary 

computation, specifying both discharge components at nodes 2,3, 1 1  and 12 and the water 
elevation at nodes 2 and 11 to be all zero. 

3. Element @ with nodes 3,4 and 13 and element @ with nodes 13,12 and 3 are included in the 
computation. 

According to the authors' numerical experiments, stable computations have been obtained 
based on the computational technique presented in this paper. But, it may be noticeable that 
the speed of movement the boundary in this computation would be slower than in the actual 
movement. 

NUMERICAL EXAMPLE 

As the first computation, flow through an open channel with a solid wall is computed. Figure 3 
shows the plan view with the finite element idealization and the vertical view of the channel 
employed in the computation. Section A-B is entrance of the channel. At section C-L, the width 
is suddenly expanded. At sections J-E and I-F, the bottom inclination is changed. Section H-G 
is the outlet. The length of the channel is 180m, and the widths of entrance and outlet are 8 m 
and 20m, respectively. The total numbers of nodal points and finite elements are 3427 and 6456, 
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1.0- 

75.0 

Figure 9. Finite element idealization of open channel with mound 
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Figure 14. Variation of water elevation 

respectively. Assuming that the longitudinal component of discharge M ,  on the boundary A-B 
is imposed as M ,  = 0.2 m2/s, and that both components of velocity on the boundaries are specified 
to be zero, the computed velocity and water elevation are plotted in Figures 4-7. At steady 
state, the Froude number Fr and critical depth H ,  are calculated and illustrated in Figure 8. The 
small arrow mark -+ means the computed velocity along the centre line of the channel. The 
Froude number, based on the computed velocity divided by the square root of the product of 
gravity acceleration and the computed water elevation, is denoted by the mark 0. The 
critical depth H ,  is computed by 

where Q is the discharge and B is the width of the channel. The critical depth is plotted with 
the computed elevation. From the Figure, the flow regions corresponding to the ordinary flow 
and jet flow can be clearly seen. The hydraulic jump is also clearly computed. 

As the second computation, flow through a channel with three mounds located on the channel 
bottom is computed to test procedures for the moving boundary. A finite element idealization 
and contour lines of the bottom topography are shown in Figure 9. The total numbers of nodal 
points and finite elements are 1071 and 2000, respectively. The length of the channel is 75 m and 
its width is 30m. The contour lines are drawn for every lOcm of height. On the boundary A-B, 
the longitudinal velocity U ,  = 1 m/s is always assigned and on the boundaries A-D and B-C, 
the velocity normal to the boundary is assumed to be zero. Water elevation on the boundary 
A-B is specified as follows. From step 0 to step 3000 v]  = 0.5 m. From step 3001 to step 3500 
v]  = 1.0 m. Namely, the water elevation is given as v] = 0.5 m on the boundary A-B and, confirming 
that the flow has reached the steady state, which is satisfactory at step 3000 and later, the water 
elevation is raised up to v] = 1.0m. The'.eddy viscosity A,  = 0.4m2/s and the friction coefficient 
1. = 0.008 s- are used. For the time increment, At = 0.10 s is employed. Computed water elevation 
and velocity are illustrated in Figures 10-12 at steps 300, 3000 and 9000. It is seen in Figures 9 
and 11 that the water front is moving downward to the down stream. In Figure 11  the steady 
state can be confirmed. It is clearly shown in Figure 12 that the two mounds at the bottom are 
completely submerged under the water. 

As the final computation, the river flow of the Arakawa River is computed. A finite element 
idealization and bottom topography are shown in Figure 13. The total numbers of nodal points 
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and finite elements are 5333 and 10,125, respectively. The total length of the river used for this 
analysis is 2150m, and the average river width is 200m. The river is separated into two flows 
at this region. On the boundary A-B, the velocity normal to the boundary U ,  = 1 m/s is always 
imposed. On the boundaries A-F, E-D and B-C, the velocity normal to the boundary is assumed 
to be zero. Water elevation on the boundary A-B is specified as shown in Figure 14. Using the 
eddy viscosity A,  = 0.4 m’/s and the friction coefficient A = 0.008 s- ’, the computation is 
performed based on the time increment At = 0.05 s. Computed water elevation and velocity are 
represented in Figures (15)-(21) at steps 2000, 4000, 9600, 10,400, 20,800, 37,600 and 44,000. 
From this computation, the velocity and water elevation can be obtained according as the water 
elevation at the up-stream is rising up or falling down. It is also useful to decide how far the 
water is spread out in case of flood. To compute this example a CPU time of 150 min per 1000 
steps was required on the FACOM M170F Computer. 

CONCLUSION 

The two-step explicit finite element method has been applied to the analysis of river flow. The 
procedures to solve the moving boundary problem have been presented and the stable 
computations have been obtained. Numerical illustration shows that the finite element method 
is entirely flexible for the analysis in which the complicated boundary configuration must be 
dealt with. Thus, the finite element method presented in this paper provides useful tools for the 
analysis of the design of river structures, improvement of flood plains and other engineering fields. 
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